Due date: Monday 22. September 2025, 10 AM.
Exercise 1
Prove the items in Lemma 1.4 that were not proved in the lecture notes.
Exercise 2
Prove Proposition 1.14.
Exercise 3
Draw the following set of points
\(\{z \in \mathbb{C}\, |\, |z-1|=|z+1|\},\)
\(\{z \in \mathbb{C}\, |\, 1<|z-\mathrm{i}|<2\},\)
\(\{z \in \mathbb{C}\, |\, |z|\geqslant 1, |\mathrm{Re}(z)|\leqslant \frac{1}{2}, \mathrm{Im}(z)>0\}.\)
Exercise 4
Decompose the following complex numbers into real and imaginary parts:
\[\frac{1}{1+\mathrm{i}}+\frac{1}{2+\mathrm{i}}+\frac{1}{3+\mathrm{i}},\]
\[\frac{2-3\mathrm{i}}{2+\mathrm{i}}+\frac{1-\mathrm{i}}{1+3\mathrm{i}},\]
\[\left(\frac{1+\mathrm{i}}{1-\mathrm{i}}\right)^k,\,\,k\in\mathbb{Z}.\]