Due date: Monday 24. November 2025, 10 AM.
Consider the permutation \(\sigma\) defined by \(1 \mapsto 3,\) \(2\mapsto 1,\) \(3\mapsto 4\) and \(4\mapsto 2.\)
Compute the permutation matrix of \(\sigma.\)
Write \(\sigma\) as a product of transpositions.
Compute the signature of \(\sigma.\)
Show that the transpose of a permutation matrix is its inverse.
Compute the adjugate matrix of the following matrices \[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix},\quad \begin{pmatrix} 1 & 1 & 2 \\ 2 & 4 & 2 \\ 0 & 2 & 1 \end{pmatrix}, \quad \begin{pmatrix} 4 & -1 & 1 \\ 1 & 1 & -2 \\ 1 & -1 & 1 \end{pmatrix}.\]
Let \(n \in \mathbb{N}\) and \(\mathbf{A}=(A_{ij})_{1\leqslant i,j\leqslant n} \in M_{n,n}(\mathbb{R})\) be a square matrix with \(A_{ij}\) all integers. Show that the entries of \(\mathbf{A}^{-1}\) are all integers if and only if \(\det(\mathbf{A})=\pm 1.\)