Number Theory
M14 — Fall 24
Contents
1 Divisibility and GCD
Preliminaries
1.1 Divisibility
1.2 The greatest common divisor
1.3 Euclid’s algorithm
2 Prime numbers and unique factorisation
2.1 Prime numbers
2.2 Unique factorisation
2.3 Infinitude of primes
3 Congruences and modular arithmetic
3.1 Congruences
3.2 Modular arithmetic
3.3 Primes in congruence classes
3.4 The Chinese remainder theorem
4 The group of units mod \(m\)
4.1 Units modulo \(m\) and the \(\varphi\) function
4.2 Primitive roots
5 Computing in \(U_n\) and RSA cryptography
5.1 Powers mod \(n\)
5.2 Polynomial vs. exponential time
5.3 Public key cryptography
5.4 The RSA cryptosystem
6 Quadratic residues
6.1 Reducing to the prime case
6.2 QRs modulo primes
7 The reciprocity law
7.1 The statement
7.2 Gauss’ Lemma
7.3 Eisenstein’s lemma and the final proof
8 Gaussian integers
8.1 Definitions
8.2 Euclidean division
8.3 Gaussian primes
8.4 Euclidean rings
8.5 The Eisenstein integers
9 Arithmetic in number fields
9.1 Algebraic integers
9.2 Number fields
10 Ideals in number fields
10.1 Ideals
10.2 Factoring ideals
10.3 The class group
10.4 Cyclotomic fields, and Fermat’s Last Theorem
11 P-adic numbers
11.1 Review of metric spaces
11.2 The \(p\)-adic metric
11.3 Building the completion
11.4 The \(p\)-adic integers \(\mathbb{Z}_p\)
11.5 P-adic numbers as “power series”
12 Equations in \(\mathbb{Z}_p\) and Hensel’s lemma
12.1 Roots of polynomials
12.2 Explicitly constructing solutions
12.3 P-adic logarithms and the structure of \(\mathbb{Z}_p^\times\)
12.4 Local-to-global principles
Number Theory
Home
Chapters
Contents
PDFs
✕