12.2 Jordan blocks

The Proposition 12.8 thus tells us that for an endomorphism \(f : V \to V\) of a finite dimensional \(\mathbb{C}\)-vector space \(V,\) we can always find an ordered basis of \(V\) so that the matrix representation of \(f\) takes block diagonal form \(\operatorname{diag}(\mathbf{A}_1,\mathbf{A}_2,\ldots,\mathbf{A}_k).\) This is already a nice statement, but it turns out that we can say more about how the individual blocks \(\mathbf{A}_i\) look like. For a precise statement, we need the notion of a Jordan block. For \(m \in \mathbb{N}\) and \(\lambda \in \mathbb{K}\) let \(\mathbf{J}_m(\lambda) \in M_{m,m}(\mathbb{K})\) denote the \(m\times m\)-matrix \[\mathbf{J}_{m}(\lambda)=\begin{pmatrix} \lambda & 1 & && & \\ & \lambda & 1 && & \\ & & \ddots & \ddots && \\ & & &\ddots & 1 & \\ & & && \lambda & 1 \\ && & & & \lambda\end{pmatrix}=\left\{\begin{array}{cc} \sum_{i=1}^m (\lambda \mathbf{E}_{i,i})+\sum_{i=1}^{m-1}\mathbf{E}_{i,i+1} & m>1 \\ (\lambda) & m=1 \end{array}\right.,\] where \(\{\mathbf{E}_{i,j}\}_{1\leqslant i,j\leqslant m}\) denotes the standard basis of \(M_{m,m}(\mathbb{K}).\) A matrix of the form \(\mathbf{J}_{m}(\lambda)\) is known as a Jordan block of size \(m.\)

Example 12.10 • Jordan blocks

\[\mathbf{J}_{1}(\lambda)=(\lambda), \qquad \mathbf{J}_{2}(3)=\begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix},\qquad \mathbf{J}_{3}(0)=\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{pmatrix},\]

We can now state precisely how the individual matrix blocks look like:

Proposition 12.11

Let \(f : V \to V\) be an endomorphism of a finite dimensional \(\mathbb{K}\)-vector space \(V\) and \(\lambda \in \mathbb{K}\) an eigenvalue of \(f.\) Then there exists an integer \(\ell \in \mathbb{N},\) integers \(m_1,\ldots,m_\ell\) and an ordered basis \(\mathbf{b}\) of \(\mathcal{E}_{f}(\lambda)\) such that \[\mathbf{M}(f|_{\mathcal{E}_f(\lambda)},\mathbf{b},\mathbf{b})=\operatorname{diag}(\mathbf{J}_{m_1}(\lambda),\mathbf{J}_{m_2}(\lambda),\ldots,\mathbf{J}_{m_\ell}(\lambda)).\]

By Proposition 12.8, the vector space \(V\) is a direct sum of the generalised eigenspaces of \(f\) and by the previous proposition we can find an ordered basis of each eigenspace so that the matrix representation of the restriction of \(f\) onto each eigenspace is a sum of Jordan blocks. Combining these two statements, we have thus shown:

Theorem 12.12 • Jordan normal form

Let \(f : V \to V\) be an endomorphism of a finite dimensional \(\mathbb{C}\)-vector space \(V\) of dimension \(n\geqslant 1.\) Then there exists an ordered basis \(\mathbf{b}\) of \(V,\) an integer \(k\geqslant 1,\) integers \(n_1,\ldots,n_k\) with \(n=n_1+n_2+\cdots+n_k\) and complex numbers \(\lambda_1,\ldots,\lambda_k\) such that \(\mathbf{M}(f,\mathbf{b},\mathbf{b})=\operatorname{diag}(\mathbf{J}_{n_1}(\lambda_1),\mathbf{J}_{n_2}(\lambda_2),\ldots,\mathbf{J}_{n_k}(\lambda_k)),\) that is, \[\mathbf{M}(f,\mathbf{b},\mathbf{b})=\begin{pmatrix} \mathbf{J}_{n_1}(\lambda_1) & & & \\ & \mathbf{J}_{n_2}(\lambda_2) & & \\ && \ddots & \\ &&& \mathbf{J}_{n_k}(\lambda_k) \end{pmatrix}.\]

Remark 12.13

The ordered basis \(\mathbf{b}\) of \(V\) provided by the Jordan normal form theorem is called a Jordan basis for \(f\).

Before we prove Proposition 12.11, we first relate Jordan blocks to the notion of generalised eigenvectors. To this end we first show:

Lemma 12.14

Let \(m \in \mathbb{N}\) and \(\lambda \in \mathbb{K}.\) The only eigenvalue of \(\mathbf{J}_m(\lambda)\) is \(\lambda.\) Its algebraic multiplicity is \(m\) and its geometric multiplicity is \(1.\)

Proof. Recall from Proposition 5.24 that the determinant of an upper triangular matrix is the product of its diagonal entries, hence the characteristic polynomial of the Jordan block \(\mathbf{J}_m(\lambda)\) is \[\operatorname{char}_{\mathbf{J}_m(\lambda)}(x)=(x-\lambda)^m,\] where here we denote the variable of the characteristic polynomial by \(x.\) It follows that \(\lambda\) is the only eigenvalue of \(\mathbf{J}_m(\lambda)\) and that its algebraic multiplicity is \(m.\) An eigenvector \(\vec{v}=(v_i)_{1\leqslant i\leqslant m}\) of \(\mathbf{J}_m(\lambda)\) with eigenvalue \(\lambda\) satisfies \(\mathbf{J}_m(\lambda)\vec{v}=\lambda \vec{v},\) that is, \[\lambda v_1+v_2=\lambda v_1,\quad \lambda v_2+v_3=\lambda v_2, \quad \cdots\quad \lambda v_{m-1}+v_m=\lambda v_{m-1}, \quad \lambda v_m=\lambda v_m.\] Hence \(v_2=v_3=\cdots=v_m=0\) while \(v_1\) is arbitrary. It follows that the geometric multiplicity of \(\lambda\) is \(1.\)

The relation between generalised eigenvectors and Jordan blocks is explained by the following two lemmas:

Lemma 12.15

Let \(m \in \mathbb{N}\) and \(\lambda \in \mathbb{K}.\) Then \(\vec{e}_m\) is a generalised eigenvector of rank \(m\) and with eigenvalue \(\lambda\) of the endomorphism \(f_{\mathbf{J}_{m}(\lambda)} : \mathbb{K}^m \to \mathbb{K}^m.\)

Proof. We assume \(m>1\) since for \(m=1\) the statement is trivial. By definition, we need to show that \[(f_{\mathbf{J}_m(\lambda)}-\lambda\mathrm{Id}_{\mathbb{K}^m})^m(\vec{e}_m)=0_{\mathbb{K}^m}\qquad \text{and} \qquad (f_{\mathbf{J}_m(\lambda)}-\lambda\mathrm{Id}_{\mathbb{K}^m})^{m-1}(\vec{e}_m)\neq 0_{\mathbb{K}^m}.\] By definition, we have \(\mathbf{J}_m(\lambda)-\lambda\mathbf{1}_{m}=\mathbf{J}_m(0)=\sum_{i=1}^{m-1}\mathbf{E}_{i,i+1}.\) We use induction to show that for \(1\leqslant k\leqslant m-1,\) we have \[\tag{12.3} (\mathbf{J}_m(0))^k=\sum_{i=1}^{m-k}\mathbf{E}_{i,i+k}.\] For \(k=1\) the statement is obviously correct and hence anchored.

Inductive step: Suppose the statement is correct for \(k\geqslant 1.\) We want to show that it is correct for \(k+1\leqslant m-1.\) Using the induction hypothesis, we compute \[(\mathbf{J}_m(0))^{k+1}=\mathbf{J}_m(0)(\mathbf{J}_m(0))^{k}=\sum_{j=1}^{m-1}\mathbf{E}_{j,j+1}\sum_{i=1}^{m-k}\mathbf{E}_{i,i+k}=\sum_{i=2}^{m-k}\mathbf{E}_{i-1,i+k},\] where the last equality uses Lemma 4.4. Since \[\sum_{i=2}^{m-k}\mathbf{E}_{i-1,i+k}=\sum_{i=1}^{m-k-1}\mathbf{E}_{i,i+k+1},\] (12.3) follows. Now we obtain \[(f_{\mathbf{J}_{m}(\lambda)}-\lambda\mathrm{Id}_{\mathbb{K}^m})^{m-1}(\vec{e}_m)=(\mathbf{J}_m(0))^{m-1}\vec{e}_m=\mathbf{E}_{1,m}\vec{e}_m=\vec{e}_1\neq 0_{\mathbb{K}^m},\] where the last equality uses that \[\tag{12.4} \mathbf{E}_{i,j}\vec{e}_k=\delta_{jk}\vec{e}_i,\] for all \(1\leqslant i,j,k\leqslant m,\) as can be verified by direct computation. Moreover, using Lemma 4.4 again, we have \[\tag{12.5} (\mathbf{J}_m(0))^m=(\mathbf{J}_m(0))^{m-1}\mathbf{J}_m(0)=\mathbf{E}_{1,m}\sum_{i=1}^{m-1}\mathbf{E}_{i,i+1}=\mathbf{0}_{m,m}\] and hence \((f-\lambda\mathrm{Id}_{\mathbb{K}^m})^m(v)=0_{\mathbb{K}^m}\) for all \(v \in V.\) In particular \(\vec{e}_m\) is a generalised eigenvector of rank \(m\) and with eigenvalue \(\lambda.\)

Using the identities (12.3) and (12.4), we compute for \(1\leqslant k\leqslant m-1\) \[(\mathbf{J}_m(0))^k\vec{e}_m=\sum_{i=1}^{m-k}\mathbf{E}_{i,i+k}\vec{e}_m=\sum_{i=1}^{m-k}\delta_{i+k,m}\vec{e}_i=\vec{e}_{m-k}\] so that \[((\mathbf{J}_m(0))^{m-1}\vec{e}_m,(\mathbf{J}_m(0))^{m-2}\vec{e}_m,\ldots,\mathbf{J}_m(0)\vec{e}_m,\vec{e}_m)=(\vec{e}_1,\vec{e}_2,\ldots,\vec{e}_{m-1},\vec{e}_m).\] Applying \(\mathbf{J}_m(\lambda)-\lambda\mathbf{1}_{m}\) repeatedly to the generalised eigenvector \(\vec{e}_m\) thus gives an ordered basis of \(V.\) In general we have:

Lemma 12.16

Let \(V\) be a \(\mathbb{K}\)-vector space and \(f : V \to V\) an endomorphism. Suppose \(v \in V\) is a generalised eigenvector of \(f\) of rank \(m\in \mathbb{N}\) with eigenvalue \(\lambda \in \mathbb{K}\) and define \(u_i=(f-\lambda\mathrm{Id}_V)^{m-i}(v)\) for \(1\leqslant i\leqslant m.\) Then

  1. \(\mathbf{b}=(u_1,\ldots,u_m)\) is an ordered basis of the subspace \(Z(g_{\lambda},v)=\operatorname{span}\{u_1,\ldots,u_m\}\);

  2. the subspace \(Z(g_{\lambda},v)\) is stable under \(f\);

  3. let \(\hat{f}\) denote the restriction of \(f\) to \(Z(g_{\lambda},v),\) then we have \(\mathbf{M}(\hat{f},\mathbf{b},\mathbf{b})=\mathbf{J}_{m}(\lambda).\)

Proof. (i) We only need to show that the vectors \(\{u_1,\ldots,u_m\}\) are linearly independent as by definition, \(\{u_1,\ldots,u_m\}\) is a generating set for \(Z(g_{\lambda},v).\) Write \(g_{\lambda}=f-\lambda\mathrm{Id}_V\) then \[(u_1,\ldots,u_m)=(g_{\lambda}^{m-1}(v),g_{\lambda}^{m-2}(v),\ldots,g_{\lambda}(v),v).\] Suppose we have scalars \(\mu_1,\ldots,\mu_m\) such that \[\tag{12.6} 0_V=\mu_1u_1+\cdots+\mu_mu_m=\mu_1g_{\lambda}^{m-1}(v)+\mu_2g_{\lambda}^{m-2}(v)+\cdots+\mu_{m-1}g_{\lambda}(v)+\mu_m v.\] Since by assumption \(g_{\lambda}^m(v)=0_V\) we have \(g_{\lambda}^{k}(v)=0_V\) for all \(k\geqslant m.\) Applying \(g_{\lambda}\) \((m-1)\)-times to (12.6) thus gives \[\mu_1g_{\lambda}^{2m-2}(v)+\mu_2g_{\lambda}^{2m-3}(v)+\cdots +\mu_{m-1}g_{\lambda}^m(v)+\mu_{m}g_{\lambda}^{m-1}(v)=\mu_{m}g_{\lambda}^{m-1}(v)=0_V.\] By assumption \(g_{\lambda}^{m-1}(v)\neq 0_V,\) hence we conclude that \(\mu_{m}=0.\) Therefore, (12.6) becomes \[\mu_1u_1+\cdots+\mu_mu_m=\mu_1g_{\lambda}^{m-1}(v)+\mu_2g_{\lambda}^{m-2}(v)+\cdots+\mu_{m-1}g_{\lambda}(v)=0_V.\] Applying \(g_{\lambda}\) \((m-2)\)-times to the previous equation we conclude that \(\mu_{m-1}=0\) as well. Continuing in this fashion it follows that \(\mu_1=\mu_2=\cdots=\mu_m=0,\) hence the vectors \(\{u_1,\ldots,u_m\}\) are linearly independent, as claimed.

(ii) Since \(\{u_1,\ldots,u_m\}\) is a basis of \(Z(g_{\lambda},v),\) it is sufficient to show that for all \(1\leqslant i\leqslant m\) the vector \(f(u_i)\) is a linear combination of \(\{u_1,\ldots,u_m\}.\) By construction, we have \[\begin{aligned} (f-\lambda\mathrm{Id}_V)(u_1)&=g_{\lambda}^m(v)=0_V,\\ (f-\lambda\mathrm{Id}_V)(u_2)&=g_{\lambda}^{m-1}(v)=u_1,\\ (f-\lambda\mathrm{Id}_V)(u_3)&=g_{\lambda}^{m-2}(v)=u_2,\\ &\vdots\\ (f-\lambda\mathrm{Id}_V)(u_m)&=g_{\lambda}(v)=u_{m-1} \end{aligned}\] Equivalently, we have \[f(u_1)=\lambda u_1,\quad f(u_2)=u_1+\lambda u_2,\quad f(u_3)=u_2+\lambda u_3,\quad \ldots \quad f(u_m)=u_{m-1}+\lambda u_m,\] which shows the claim.

(iii) Previously we showed that \(f(u_1)=\lambda u_1,\) hence the first column vector of \(\mathbf{M}(\hat{f},\mathbf{b},\mathbf{b})\) is \(\lambda \vec{e}_1.\) For \(2\leqslant i \leqslant m,\) we have \(f(u_i)=1 u_{i-1}+\lambda u_i\) and hence the \(i\)-th column vector of \(\mathbf{M}(\hat{f},\mathbf{b},\mathbf{b})\) is given by \(\vec{e}_{i-1}+\lambda \vec{e}_i.\) This shows that \(\mathbf{M}(\hat{f},\mathbf{b},\mathbf{b})=\mathbf{J}_{m}(\lambda).\)

12.3 Nilpotent endomorphisms

We will prove Proposition 12.11 as a consequence of a statement about so-called nilpotent endomorphisms.

Definition 12.17 • Nilpotent endomorphism

An endomorphism \(g : V \to V\) of a \(\mathbb{K}\)-vector space \(V\) is called nilpotent if there exists an integer \(m \in \mathbb{N}\) such that \(g^m=o,\) where \(o : V \to V\) denotes the zero endomorphism defined by the rule \(o(v)=0_V\) for all \(v \in V.\) A matrix \(\mathbf{A}\in M_{n,n}(\mathbb{K})\) is called nilpotent if \(f_\mathbf{A}:\mathbb{K}^n \to \mathbb{K}^n\) is nilpotent.

Lemma 12.18

Let \(V\) be a finite dimensional \(\mathbb{K}\)-vector space and \(\lambda \in \mathbb{K}\) an eigenvalue of the endomorphism \(f : V \to V.\) Then the restriction \(g=(f-\lambda\mathrm{Id}_V)|_{\mathcal{E}_{f}(\lambda)}\) of \(f-\lambda\mathrm{Id}_V\) to the generalised eigenspace \(\mathcal{E}_f(\lambda)\) is a nilpotent endomorphism.

Proof. There exists an integer \(m \in \mathbb{N}\) such that \(\mathcal{E}_f(\lambda)=\operatorname{Ker}((f-\lambda\mathrm{Id}_V)^m).\) Therefore, for all \(v \in \mathcal{E}_f(\lambda)\) we have \((f-\lambda\mathrm{Id}_V)^m(v)=0_V\) which shows that \(g^m=o,\) as claimed.

For nilpotent endomorphisms, we can always find a natural ordered basis of \(V\):

Theorem 12.19

Let \(V\) be a finite dimensional \(\mathbb{K}\)-vector space and \(g : V \to V\) a nilpotent endomorphism. Then there exists an integer \(\ell \in \mathbb{N},\) integers \(m_1,\ldots,m_{\ell} \in \mathbb{N}\) and vectors \(v_1,\ldots,v_{\ell} \in V\) such that \[\begin{gathered} \mathbf{b}=(g^{m_1-1}(v_1),g^{m_1-2}(v_1),\ldots,g(v_1),v_1,g^{m_2-1}(v_2),g^{m_2-2}(v_2),\ldots,g(v_2),v_2,\ldots\\ \ldots,g^{m_{\ell}-1}(v_\ell),g^{m_{\ell}-2}(v_\ell),\ldots,g(v_\ell),v_\ell) \end{gathered}\] is an ordered basis of \(V\) and such that \(g^{m_1}(v_1)=g^{m_2}(v_2)=\cdots=g^{m_\ell}(v_{\ell})=0_V.\) In particular, we have \[\mathbf{M}(g,\mathbf{b},\mathbf{b})=\operatorname{diag}(\mathbf{J}_{m_1}(0),\mathbf{J}_{m_2}(0),\ldots,\mathbf{J}_{m_{\ell}}(0)).\]

Proof. We use induction on the dimension of the vector space \(V.\) For \(\dim V=1\) the only nilpotent endomorphism is the zero endomorphism \(o : V \to V\) and we can take \(\ell=1,\) \(m_1=1\) and \(\mathbf{b}=(v)\) for any non-zero vector \(v \in V.\) The statement is thus anchored.

Inductive step: Suppose \(\dim V>1\) and that the statement is true for all vector spaces of dimension at most \(\dim(V)-1.\) Since \(g\) is nilpotent, we must have \(\det g=0\) and hence \(g\) cannot be surjective by Proposition 6.22. Therefore \(U=\operatorname{Im}(g)\) is a subspace of \(V\) whose dimension is at most \(\dim(V)-1.\) Observe that \(U\) is stable under \(g\) and hence \(h=g|_U : U \to U\) is a nilpotent endomorphism of \(U.\) The induction hypothesis implies that there exists an integer \(k,\) integers \(n_1,\ldots,n_{k}\) and vectors \(u_1,\ldots,u_{k} \in U\) such that \[\begin{gathered} \mathbf{c}=(h^{n_1-1}(u_1),h^{n_1-2}(u_1),\ldots,h(u_1),u_1,h^{n_2-1}(u_2),h^{n_2-2}(u_2),\ldots,h(u_2),u_2,\ldots\\ \ldots,h^{n_{k}-1}(u_{k}),h^{n_{k}-2}(u_{k}),\ldots,h(u_{k}),u_{k}) \end{gathered}\] is an ordered basis of \(U\) and such that \(h^{n_1}(u_1)=h^{n_2}(u_2)=\cdots=h^{n_k}(u_k)=0_U.\)

Since \(u_1,\ldots,u_k \in U=\operatorname{Im}(g),\) there exist vectors \(v_1,\ldots,v_k\) such that \(u_i=g(v_i)\) for all \(1\leqslant i\leqslant k.\) Set \(m_i=n_i+1\) for \(1\leqslant i\leqslant k\) and consider the set \[\begin{gathered} S=\{g^{m_1-1}(v_1),g^{m_1-2}(v_1),\ldots,g(v_1),v_1,g^{m_2-1}(v_2),g^{m_2-2}(v_2),\ldots,g(v_2),v_2,\ldots\\ \ldots,g^{m_{k}-1}(v_k),g^{m_{k}-2}(v_k),\ldots,g(v_k),v_k\}. \end{gathered}\] We claim \(S\) is linearly independent. Suppose we can find a linear combination \(w\) of the elements of \(S\) that gives the zero vector. Applying \(g\) to this linear combination, we obtain a linear combination of the elements of \[\begin{gathered} \{g^{m_1}(v_1),g^{m_1-1}(v_1),\ldots,g^2(v_1),g(v_1),g^{m_2}(v_2),g^{m_2-1}(v_2),\ldots,g^2(v_2),g(v_2),\ldots\\ \ldots,g^{m_{k}}(v_k),g^{m_{k}-1}(v_k),\ldots,g^2(v_k),g(v_k)\} \end{gathered}\] that gives the zero vector. Equivalently, we obtain a linear combination of the elements of \[\begin{gathered} \{g^{m_1-1}(u_1),g^{m_1-2}(u_1),\ldots,g(u_1),u_1,g^{m_2-1}(u_2),g^{m_2-2}(u_2),\ldots,g(u_2),u_2,\ldots\\ \ldots,g^{m_{k}-1}(u_k),g^{m_{k}-2}(u_k),\ldots,g(u_k),u_k\} \end{gathered}\] that gives the zero vector. Equivalently, we obtain a linear combination of the elements of \[\begin{gathered} \{h^{n_1}(u_1),h^{n_1-1}(u_1),\ldots,h(u_1),u_1,h^{n_2}(u_2),h^{n_2-1}(u_2),\ldots,h(u_2),u_2,\ldots\\ \ldots,h^{n_{k}}(u_k),h^{n_{k}-1}(u_k),\ldots,h(u_k),u_k\} \end{gathered}\] that gives the zero vector. Here we use that \(m_i=n_i+1\) for \(1\leqslant i\leqslant k\) and that \(h=g\) on \(\operatorname{Im}(g).\) The tuple \(\mathbf{c}\) is an ordered basis of \(U,\) hence all the coefficients in this linear combination must vanish, except the coefficients before each vector \(h^{n_i}(u_i),\) since \(h^{n_i}(u_i)=0_V\) for all \(1\leqslant i\leqslant k.\) The initial linear combination \(w\) thus simplifies to become \[\mu_1g^{m_1-1}(v_1)+\mu_2g^{m_2-1}(v_2)+\cdots+\mu_{k}g^{m_k-1}(v_k)=0_V.\] for some scalars \(\mu_1,\ldots,\mu_k.\) It remains to argue that these scalars are all zero. The previous equation is equivalent to \[\mu_1 h^{n_1-1}(u_1)+\mu_2h^{n_2-2}(u_2)+\cdots+\mu_kh^{n_k-1}(u_k)=0_V.\] Using the linear independence of the elements of \(\mathbf{c}\) again, we conclude that \(\mu_1=\cdots=\mu_k=0,\) as desired.

Observe that by construction, the vectors \(v_1,\ldots,v_k\) satisfy \(g^{m_1}(v_1)=g^{m_2}(v_2)=\cdots=g^{m_k}(v_k)=0_V.\)

By Theorem 3.64 we can an integer \(\ell\geqslant k+1\) and vectors \(T=\{\hat{v}_{k+1},\ldots,\hat{v}_\ell\} \subset V\) such that \(S\cup T\) is a basis of \(V.\) For each \(k+1\leqslant i\leqslant \ell,\) the vector \(g(\hat{v}_i)\) is an element of \(\operatorname{Im}(g)\) and hence a linear combination of the elements of \(\mathbf{c}.\) By construction, the elements of \(\mathbf{c}\) arise by applying \(g\) to the elements of \(S.\) It follows that for each \(k+1\leqslant i\leqslant \ell\) there exists a vector \(z_i \in \operatorname{span}(S)\) such that \(g(z_i)=g(\hat{v}_i).\) For \(k+1\leqslant i\leqslant \ell,\) define \(v_i=\hat{v}_i-z_i\) and consider the tuple \[\begin{gathered} \mathbf{b}=(g^{m_1-1}(v_1),g^{m_1-2}(v_1),\ldots,g(v_1),v_1,g^{m_2-1}(v_2),g^{m_2-2}(v_2),\ldots,g(v_2),v_2,\ldots\\ \ldots,g^{m_{k}-1}(v_k),g^{m_{k}-2}(v_k),\ldots,g(v_k),v_k,v_{k+1},\ldots,v_{\ell}) \end{gathered}\] Observe that by construction we have \(g(v_i)=0_V\) for \(k+1\leqslant i\leqslant \ell\) so that \(m_{i}=1\) for \(k+1\leqslant i\leqslant\ell.\) Furthermore, the tuple \(\mathbf{b}\) has the same number of elements as \(S\cup T\) it must thus be the desired ordered basis of \(V,\) provided the elements of \(\mathbf{b}\) span all of \(V.\) Since each \(v_i\) arises from \(\hat{v}_i\) by subtracting an element in the span of \(S\) and since \(S\cup T\) generates \(V,\) the elements of \(\mathbf{b}\) must also generate \(V.\)

Finally, the first \(m_1\) vectors of \(\mathbf{b}\) are \(y_i=g^{m_1-i}(v_1)\) for \(1\leqslant i\leqslant m_1\) and we have \(g(y_1)=0_V\) and \(g(y_i)=y_{i-1}\) for \(2\leqslant i\leqslant m_1.\) This contributes the Jordan block \(\mathbf{J}_{m_1}(0)\) to the matrix representation of \(g\) with respect to \(\mathbf{b}.\) The remaining blocks arise by considering the vectors \(g^{m_k-i}(v_k)\) for \(2\leqslant k\leqslant \ell\) and where \(1\leqslant i\leqslant m_k.\)

As an application, we obtain:

Proof of Proposition 12.11. Let \(f : V \to V\) be an endomorphism of the finite dimensional \(\mathbb{K}\)-vector space \(V\) and \(\lambda\) an eigenvalue of \(f.\) By Lemma 12.18, the restriction of \(g=f-\lambda\mathrm{Id}_V\) to the generalised eigenspace \(W=\mathcal{E}_f(\lambda)\) is nilpotent. By Theorem 12.19, there exists an integer \(\ell \in \mathbb{N},\) integers \(m_1,\ldots,m_{\ell} \in \mathbb{N}\) and vectors \(v_1,\ldots,v_{\ell}\) such that \[\begin{gathered} \mathbf{b}=(g^{m_1-1}(v_1),g^{m_1-2}(v_1),\ldots,g(v_1),v_1,g^{m_2-1}(v_2),g^{m_2-2}(v_2),\ldots,g(v_2),v_2,\ldots\\ \ldots,g^{m_{\ell}-1}(v_\ell),g^{m_{\ell}-2}(v_\ell),\ldots,g(v_\ell),v_\ell) \end{gathered}\] is an ordered basis of \(W\) and such that \(g^{m_1}(v_1)=g^{m_2}(v_2)=\cdots=g^{m_\ell}(v_{\ell})=0_V.\) Notice that this implies that for all \(1\leqslant i\leqslant \ell,\) the vector \(v_i\) is a generalised eigenvector of rank \(m_i\) with eigenvalue \(\lambda\) of \(f\) and moreover that we have \[\mathcal{E}_f(\lambda)=\bigoplus_{i=1}^{\ell} Z(g_{\lambda},v_i).\] With respect to this basis we obtain \[\mathbf{M}(g|_{\mathcal{E}_f(\lambda)},\mathbf{b},\mathbf{b})=\operatorname{diag}(\mathbf{J}_{m_1}(0),\mathbf{J}_{m_2}(0),\ldots,\mathbf{J}_{m_{\ell}}(0))\] Since \(f=g+\lambda\mathrm{Id}_V,\) it follows that \[\mathbf{M}(f|_{\mathcal{E}_f(\lambda)},\mathbf{b},\mathbf{b})=\operatorname{diag}(\mathbf{J}_{m_1}(\lambda),\mathbf{J}_{m_2}(\lambda),\ldots,\mathbf{J}_{m_{\ell}}(\lambda)),\] as claimed.

Exercises

Exercise 12.20

Show that \(\mathbf{A}\in M_{n,n}(\mathbb{K})\) is nilpotent if and only if there exists an integer \(m \in \mathbb{N}\) such that \(\mathbf{A}^m=\mathbf{0}_n.\)

Solution

If \(f_\mathbf{A}\) is nilpotent, then there is \(m\in\mathbb{N}\) such that \[o=\underbrace{f_\mathbf{A}\circ\cdots\circ f_\mathbf{A}}_{m-\text{times}} = f_{\mathbf{A}^m}\] and hence \(\mathbf{A}^m = \mathbf{0}_n.\) Conversely, if \(\mathbf{A}^m=\mathbf{0}_n\) for some \(m\in\mathbb{N},\) then \[\underbrace{f_\mathbf{A}\circ\cdots\circ f_\mathbf{A}}_{m-\text{times}}=f_{\mathbf{A}^m}=f_{\mathbf{0}_n} = o.\]

Home

Contents

Lecture Recordings

Quizzes

Study Weeks