3.6 Curvature of embedded surfaces

Given an embedded surface \(M\subset \mathbb{R}^{3},\) we may ask how we can define a notion of curvature at each point of \(M.\)

Consider a plane \(M=f^{-1}\left(\{0\}\right) \subset \mathbb{R}^3,\) where \(f : \mathbb{R}^3 \to \mathbb{R},\) \(p=(x,y,z) \mapsto Ax+By+Cz\) is a linear function and the constants \(A,B,C\) are not all zero. In this case a unit normal field is given by \[p\mapsto N(p)=\frac{1}{\sqrt{A^2+B^2+C^2}}\begin{pmatrix} A \\ B \\ C \end{pmatrix}_p.\] Observe that this unit normal field is constant when we forget about the basepoint. That is, writing \[N(p)=(\nu(p))_p\] for some map \(\nu : \mathbb{R}^3 \to M_{3,1}(\mathbb{R}),\) we have \[\nu(p)=\frac{1}{\sqrt{A^2+B^2+C^2}}\begin{pmatrix} A \\ B \\ C \end{pmatrix}\] so that \(\nu(p)\) is independent of \(p.\)

Intuitively a plane is a flat surface. In order to define a notion of curvature we can study how the unit normal field changes along an embedded surface. This leads to the notion of the shape operator.

Let \(M=f^{-1}\left(\{c\}\right)\) be an embedded surface and \(N : M \to TM^{\perp}\) a unit normal field. We may take \(N=\operatorname{grad}f/\Vert \operatorname{grad}f\Vert.\) By assumption \(\operatorname{grad}f(p)\) is non-zero for all points \(p \in M.\) Each point \(p\) of \(M\) admits an open neighbourhood on which \(\operatorname{grad}f(p)\) is also non-zero. This implies that \(N\) is well defined on an open subset \(U \subset \mathbb{R}^{3}\) which contains \(M.\) Again we write \[N(p)=\nu(p)_p\] for some function \(\nu : U \to M_{3,1}(\mathbb{R}).\) Explicitly we have \[\nu(p)=\begin{pmatrix} \nu_1(p) \\ \nu_2(p) \\\nu_{3}(p)\end{pmatrix}\] for real-valued functions \(\nu_i : U \to \mathbb{R}.\) Since \(N\) is a unit normal field, we have \[\sum_{i=1}^{3}\nu_i(p)^2=1\] for all \(p \in U.\) Taking the exterior derivative of this equation, we obtain \[\tag{3.2} 0=2\sum_{i=1}^{3}\nu_i(p)\mathrm{d}\nu_i|_{p}.\] Defining \[[\mathrm{d}\nu(\vec{v}_p)]_p:=\begin{pmatrix} \mathrm{d}\nu_1(\vec{v}_p) \\ \mathrm{d}\nu_2(\vec{v}_p) \\\mathrm{d}\nu_{3}(\vec{v}_p)\end{pmatrix}_p\] for all \(\vec{v}_p \in TU,\) (3.2) implies \[\langle N(p),[\mathrm{d}\nu(\vec{v}_p)]_p\rangle=0.\] Recall that \(T_pM^{\perp}\) is spanned by \(N(p),\) hence \([\mathrm{d}\nu(\vec{v}_p)]_p\) is an element of \(T_pM\) for all \(\vec{v}_p.\) In particular, for all \(p \in M\) we obtain a linear map \[S_p : T_p M \to T_p M, \qquad \vec{v}_p \mapsto [\mathrm{d}\nu(\vec{v}_p)]_p.\]

Definition 3.33 • Shape operator and Gauss map

The map \(S_p\) is known as the shape operator and the map \(\nu : M \to S^{2}\subset M_{3,1}(\mathbb{R})\) is called the Gauss map of \(M\).

Here \(S^{2}\) denotes the \(2\)-sphere in \(M_{3,1}(\mathbb{R}),\) that is, those column vectors \(\vec{v}=(v_i)_{1\leqslant i\leqslant 3}\) so that \((v_1)^2+(v_2)^2+(v_3)^2=1.\)

Restricting \(\langle\cdot{,}\cdot\rangle_p\) to \(T_pM\subset T_p\mathbb{R}^{3},\) each tangent space of \(M\) is a Euclidean space and with respect to this Euclidean space structure we have the following important fact:

Proposition 3.34

For all \(p \in M\) the shape operator \(S_p : T_pM \to T_pM\) is self-adjoint. That is, for all \(p \in M\) and all \(\vec{v}_p,\vec{w}_p \in T_pM,\) we have \[\langle \vec{v}_p,S_p(\vec{w}_p)\rangle=\langle S_p(\vec{v}_p),\vec{w}_p\rangle.\]

We thus obtain two symmetric bilinear forms on each tangent space:

Definition 3.35 • First and second fundamental form

Let \(M\subset \mathbb{R}^{3}\) be an embedded surface. The first fundamental form of \(M\) at \(p\in M\) is the restriction of the inner product on \(T_p\mathbb{R}^{3}\) to \(T_pM,\) that is, we define \[\mathrm{I}(\vec{v}_p,\vec{w}_p):=\langle \vec{v}_p,\vec{w}_p\rangle\] for all \(\vec{v}_p,\vec{w}_p \in T_pM.\) The symmetric bilinear form on \(T_pM\) defined by the rule \[\mathrm{I}\!\,\mathrm{I}(\vec{v}_p,\vec{w}_p):=-\langle S_p(\vec{v}_p),\vec{w}_p\rangle\] for all \(\vec{v}_p,\vec{w}_p \in T_pM\) is called the second fundamental form of \(M\) at \(p\).

Proof of Proposition 3.34. Write \(\xi=1/\Vert \operatorname{grad}f\Vert\) and \(p=(x_1,x_2,x_3).\) Then, for all \(1\leqslant i\leqslant 3\) we have \(\nu_i=\xi \partial_i f\) and hence \[\mathrm{d}\nu_i(\vec{v}_p)=\xi(p)\sum_{j=1}^{3}\partial_j\partial_i f(p)\mathrm{d}x_j(\vec{v}_p)+\partial_i f(p)\mathrm{d}\xi(\vec{v}_p).\] Writing \[\vec{v}_p=\begin{pmatrix} v_1 \\ v_2 \\ v_{3}\end{pmatrix}_p \qquad \text{and}\qquad \vec{w}_p=\begin{pmatrix} w_1 \\ w_2 \\ w_{3}\end{pmatrix}_p,\] we thus have \[\langle S_p(\vec{v}_p),\vec{w}_p\rangle=\xi(p)\sum_{i=1}^{3}\sum_{j=1}^{3}\left(w_i\partial_j\partial_i f(p)\mathrm{d}x_j(\vec{v}_p)\right)+\mathrm{d}\xi(\vec{v}_p)\sum_{i=1}^{3}w_i\partial_i f(p).\] Now notice that \[\mathrm{d}\xi(\vec{v}_p)\sum_{i=1}^{3}w_i\partial_i f(p)=\mathrm{d}\xi(\vec{v}_p)\langle \operatorname{grad}f(p),\vec{w}_p\rangle=0.\] since \(\vec{w}_p \in T_pM\) and \(\operatorname{grad}f(p) \in T_pM^{\perp}.\) Furthermore, \(\mathrm{d}x_j(\vec{v}_p)=v_j,\) hence we obtain \[\langle S_p(\vec{v}_p),\vec{w}_p\rangle=\xi(p)\sum_{i=1}^{3}\sum_{j=1}^{3}w_iv_j\partial_j\partial_i f(p).\] In terms of the Hessian matrix \(\mathbf{H}_f(p)\) of \(f\) at \(p\) (whose entries are given by \([\mathbf{H}_f(p)]_{ij}=\partial_i\partial_j f(p)\)), we can thus write \[\tag{3.3} \mathrm{I}\!\,\mathrm{I}(\vec{v}_p,\vec{w}_p)=-\langle S_p(\vec{v}_p),\vec{w}_p\rangle=-\xi(p)\vec{w}^T\mathbf{H}_f(p)\vec{v}.\] Since \(f\) is smooth the Hessian matrix is symmetric and this gives \[\langle S_p(\vec{v}_p),\vec{w}_p\rangle=\xi(p)\vec{w}^T\mathbf{H}_f(p)\vec{v}=\langle \vec{v}_p,S_p(\vec{w}_p)\rangle,\] as claimed.
Example 3.36 • Shape operator of the 2-sphere

Let \(M=S^2(r)\subset \mathbb{R}^3\) be the \(2\)-sphere of radius \(r>0.\) In this case \(M=f^{-1}\left(\{r^2\}\right)\) for the function \(f : \mathbb{R}^3 \to \mathbb{R}\) defined by \(p=(x,y,z) \mapsto f(p)=x^2+y^2+z^2.\) Clearly we have \[\mathbf{H}_f(p)=2\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\] and \[\xi(p)=\frac{1}{\Vert \operatorname{grad}f(p)\Vert}=\frac{1}{2r}.\] Therefore, we have for all \(p \in S^2(r)\) and \(\vec{v}_p,\vec{w}_p \in T_pS^2\) \[\mathrm{I}\!\,\mathrm{I}(\vec{v}_p,\vec{w}_p)=-\langle S_p(\vec{v}_p),\vec{w}_p\rangle=-\frac{1}{r} \vec{v}^T\vec{w}.\] It follows that \[S_p(\vec{v}_p)=\frac{1}{r}\vec{v}_p.\]

Example 3.37 • Shape operator of a graph

Let \(I\) be an interval and \(h : I \to \mathbb{R}\) a smooth function. We obtain an associated curve \[\gamma : I \to \mathbb{R}^2, \qquad t \mapsto (t,h(t))\] whose image is the graph \(\mathcal{G}_h\) of \(h.\) We want to compute the shape operator of the graph of \(h.\) Recall that \(\mathcal{G}_h\) is a level set with level \(0\) for the function \[f : I\times \mathbb{R}\to \mathbb{R}, \qquad p=(t,s) \mapsto h(t)-s.\] Clearly we have \[\operatorname{grad}f(p)=\begin{pmatrix} h^{\prime}(t) \\ -1 \end{pmatrix}_{(t,s)}\] and hence \[\mathbf{H}_f(p)=\begin{pmatrix} h^{\prime\prime}(t) & 0 \\ 0 & 0 \end{pmatrix}_{(t,s)}.\] Let \(p=(t,h(t))\) be an element of \(M=\mathcal{G}_h.\) A orthonormal basis of of \(T_pM\) is given by \[\vec{e}_p=\frac{1}{\sqrt{1+h^{\prime}(t)^2}}\begin{pmatrix} 1 \\ h^{\prime}(t) \end{pmatrix}_p\] from which we compute \[\tag{3.4} \langle S_p(\vec{e}_p),\vec{e}_p\rangle=\frac{h^{\prime\prime}(t)}{(1+h^{\prime}(t)^2)^{3/2}}.\] Notice that \(T_pM\) is \(1\)-dimensional, from this we conclude that \[S_p(\vec{v}_p)=\frac{h^{\prime\prime}(t)}{(1+h^{\prime}(t)^2)^{3/2}}\vec{v}_p\] for all \(\vec{v}_p \in T_pM,\) where \(p=(t,h(t)).\)

Definition 3.38 • Normal curvature

Let \(M\subset \mathbb{R}^{3}\) be an embedded surface. Then for all \(p \in M\) all all \(\vec{v}_p \in T_pM\) with \(\langle \vec{v}_p,\vec{v}_p\rangle=1,\) we define the normal curvature at \(p\) in the direction \(\vec{v}_p\) by \[\kappa(\vec{v}_p)=-\mathrm{I}\!\,\mathrm{I}(\vec{v}_p,\vec{v}_p)=\langle S_p(\vec{v}_p),\vec{v}_p\rangle.\]

We would like to have a geometric interpretation of \(\kappa(\vec{v}_p).\) By (3.4) the normal curvature of a graph \(\mathcal{G}_h\) at \((t,h(t))\) is given by (both for \(\vec{e}_p\) and for \(-\vec{e}_p\)) \[\frac{h^{\prime\prime}(t)}{(1+h^{\prime}(t)^2)^{3/2}}.\] This is precisely the signed curvature at \(t\) of the curve \(\gamma : I \to \mathbb{R}^2,\) \(t \mapsto (t,h(t)).\)

It is tempting to try to interpret \(\kappa(\vec{v}_p)\) as a signed curvature of a plane curve as well. To this end write \[p=\begin{pmatrix} x_1 \\ x_2 \\ x_{3}\end{pmatrix} \qquad \text{and} \qquad N(p)=\begin{pmatrix} v_1 \\ v_2 \\ v_{3}\end{pmatrix}_p\qquad \text{and}\qquad \vec{v}_p=\begin{pmatrix} w_1 \\ w_2\\ w_{3}\end{pmatrix}_p\] and consider the affine \(2\)-plane \(U_{\vec{v}_p}\subset \mathbb{R}^{3}\) passing through \(p\) and which is spanned by \(N(p)\) and \(\vec{v}_p\) \[U_{\vec{v}_p}:=\{(x_1+s_1v_1+s_2w_1,x_2+s_1v_2+s_2w_2, x_{3}+s_1v_{3}+s_2w_{3}) \,|\, s_1,s_2 \in \mathbb{R}\}\] The intersection of this affine \(2\)-plane with \(M\) is a plane curve. Let \(\epsilon>0\) and \(\gamma : (-\epsilon,\epsilon) \to U_{\vec{v}_p}\cap M\) be a smooth unit speed curve with \(\gamma(0)=p\) and \(\dot{\gamma}(0)=\vec{v}_p\) which is contained in the intersection \(U_{\vec{v}_p}\cap M.\) In order to apply the definition of the signed curvature of a plane curve, we choose a vector space isomorphism \(\Psi : U_{\vec{v}_p} \to \mathbb{R}^2\) and compute the signed curvature of the curve \(\delta:=\Psi \circ \gamma : I \to \mathbb{R}^2\) at \(t=0.\) Let \(\Psi : U_{\vec{v}_p} \to \mathbb{R}^2\) be the vector space isomorphism so that \[\Psi\left((x_1+s_1v_1+s_2w_1,x_2+s_1v_2+s_2w_2, x_{3}+s_1v_{3}+s_2w_{3})\right)=(s_1,s_2)\] for all \(s_1,s_2 \in \mathbb{R}.\) Observe that \[\Psi_*(N(p))=\vec{X} \qquad \text{and} \qquad \Psi_*(\vec{v}_p)=\vec{Y},\] where here we simplify notation and write \(\vec{X},\vec{Y}\) for the standard basis of \(T_{0_{\mathbb{R}^2}}\mathbb{R}^2\) \[\vec{X}=\begin{pmatrix} 1 \\ 0 \end{pmatrix}_{0_{\mathbb{R}^2}}, \qquad \vec{Y}=\begin{pmatrix} 0 \\ 1 \end{pmatrix}_{0_{\mathbb{R}^2}}.\] By definition, the signed curvature of \(\delta\) at \(t=0\) is the real number \(\kappa_0\) so that \[\ddot{\delta}(0)=\kappa_0J(\dot{\delta}(0)),\] where \(J : T_{0_{\mathbb{R}^2}}\mathbb{R}^2 \to T_{0_{\mathbb{R}^2}}\mathbb{R}^2\) is the unique linear map satisfying \[J(\vec{X})=\vec{Y} \qquad \text{and} \qquad J(\vec{Y})=-\vec{X}.\] Let \(\langle\!\langle\cdot{,}\cdot\rangle\!\rangle\) denote the inner product on \(T_{0_{\mathbb{R}^2}}\mathbb{R}^2.\) Since \(N(p),\vec{v}_p\) are orthonormal vectors in \(T_p\mathbb{R}^{3}\) and \(\vec{X},\vec{Y}\) are orthonormal vectors in \(T_{0_{\mathbb{R}^2}}\mathbb{R}^2,\) it follows that \[\Psi_* : \operatorname{span}\{\vec{v}_p,N(p)\} \to T_{0_{\mathbb{R}^2}}\mathbb{R}^2\] is an orthogonal transformation. Using this fact we compute \[\begin{aligned} \langle\ddot{\gamma}(0),N(p)\rangle&=\langle\!\langle \Psi_*(\ddot{\gamma}(0)),\Psi_*(N(p))\rangle\!\rangle=\langle\!\langle \ddot{\delta}(0),\vec{X}\rangle\!\rangle=-\kappa_0\langle\!\langle J(\dot{\delta}(0),J(\vec{Y}))\\ &=-\kappa_0\langle\!\langle \dot{\delta}(0),\vec{Y}\rangle\!\rangle=-\kappa_0\langle\!\langle \Psi_*(\dot{\gamma}(0)),\vec{Y}\rangle\!\rangle\\ &=-\kappa_0\langle\!\langle \Psi_*(\vec{v}_p),\vec{Y}\rangle\!\rangle=-\kappa_0\langle\!\langle \vec{Y},\vec{Y}\rangle\!\rangle=-\kappa_0. \end{aligned}\] We also have:

Lemma 3.39

Let \(M\) be an embedded surface and \(\gamma : (-\epsilon,\epsilon) \to M\) a smooth unit speed curve with \(\gamma(0)=p\) and \(\dot{\gamma}(0)=\vec{v}_p,\) then \[\kappa(\vec{v}_p)=-\langle \ddot{\gamma}(0),N(p)\rangle.\]

Proof. Let \(\gamma=(\gamma_1,\gamma_2,\gamma_{3}) : I \to M\subset \mathbb{R}^{3}\) be a smooth unit speed curve with \(\gamma(0)=p\) and \(\dot{\gamma}(0)=\vec{v}_p.\) Then \[\begin{aligned} 0&=\left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0}\langle \dot{\gamma}(t),N(\gamma(t))\rangle=\left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0}\sum_{i=1}^{3}\gamma^{\prime}_i(t)\nu_i(\gamma(t))\\ &=\sum_{i=1}^{3}\gamma^{\prime\prime}_i(0)\nu_i(\gamma(0))+\sum_{i=1}^{3}\gamma^{\prime}_i(0)\mathrm{d}\nu_i(\dot{\gamma}(0))\\ &=\langle \ddot{\gamma}(0),N(p)\rangle+\langle S_p(\vec{v}_p),\vec{v}_p\rangle. \end{aligned}\] Hence we obtain the formula \[\kappa(\vec{v}_p)=-\langle \ddot{\gamma}(0),N(p)\rangle.\]

In summary we see that \[\kappa(\vec{v}_p)=-\langle \ddot{\gamma}(0),N(p)\rangle=\kappa_0\] where \(\kappa_0\) is the signed curvature at \(p\) of the curve cut out of \(M\) by the affine \(2\)-plane \(U_{\vec{v}_p}\) passing through \(p\) and which is spanned by \(N(p)\) and \(\vec{v}_p.\) Notice that \(\kappa(\vec{v}_p)\) depends on the choice of unit normal vector field \(N.\) Reversing the sign of \(N(p)\) reverses the sign of \(\kappa(\vec{v}_p).\)

Since \(S_p : T_pM \to T_pM\) is self-adjoint for all \(p \in M,\) the Spectral Theorem from M06 Linear Algebra II implies that \(T_pM\) admits an ordered orthonormal basis \((\vec{v}_p,\vec{w}_p)\) consisting of eigenvectors of \(S_p.\)

Definition 3.40 • Principal curvatures and principal curvature directions

Let \(M \subset \mathbb{R}^{3}\) be an embedded surface and \(p \in M.\) For \(1\leqslant i\leqslant 2,\) the eigenvalues \[\kappa_1(p):=\kappa(\vec{v}_p)=\langle S_p(\vec{v}_p),\vec{v}_p\rangle \qquad \text{and} \qquad \kappa_2(p):=\kappa(\vec{w}_p)=\langle S_p(\vec{w}_p),\vec{w}_p\rangle\] of \(S_p\) at \(p \in M\) are called the principal curvatures of \(M\) at \(p\). The corresponding orthonormal eigenvectors \(\vec{v}_p,\vec{w}_p\) are called the principal curvature directions of \(M\) at \(p\).

The average trace of the shape operator is known as the mean curvature and the determinant of the shape operator as the Gauss curvature:

Definition 3.41 • Mean curvature and Gauss curvature

Let \(M\subset \mathbb{R}^{3}\) be an embedded surface. We define \[H : M \to \mathbb{R}, \qquad p\mapsto H(p)=\frac{1}{2}\operatorname{Tr}S_p=\frac{1}{2}\left(\kappa_1(p)+\kappa_2(p)\right).\] We call \(H(p)\) the mean curvature of \(M\) at \(p\). We also define \[K : M \to \mathbb{R}, \qquad p\mapsto K(p)=\det S_p=\kappa_1(p)\kappa_2(p).\] We call \(K(p)\) the Gauss curvature of \(M\) at \(p\).

Using the principal curvatures we can classify the points of an embedded surface into different types:

Definition 3.42

Let \(p \in M\) be a point of an embedded surface. Then \(p\) is called an umbilical point if \(\kappa_1(p)=\kappa_2(p).\) If \(\kappa_1(p)=\kappa_2(p)=0\) we say \(p\) is a planar point. If \(K(p)=0,\) but \(H(p)\neq 0\) we say \(p\) is a parabolic point. If \(K(p)>0\) we say \(p\) is an elliptic point and if \(K(p)<0\) we say \(p\) is a hyperbolic point.

Remark 3.43

  1. Notice that changing the sign of \(N(p)\) changes the sign of \(H(p),\) whereas the sign of \(K(p)\) is unchanged.

  2. Example 3.36 immediately implies that a \(2\)-sphere of radius \(r\) has Gauss curvature \(1/r^2\) and mean curvature \(1/r\) at each of its points. It consists entirely of elliptic points.
  3. An affine \(2\)-plane in \(\mathbb{R}^3\) has vanishing Gauss and mean curvature at each of its points. Unsurprisingly, it consists entirely of planar points.

  4. With our convention of taking \(N=\operatorname{grad}f / \Vert \operatorname{grad}f \Vert,\) it follows that the normal curvature at \(p \in M\) in the direction of \(\vec{v}_p \in T_pM\) is positive if the surface bends away from \(N\) in the direction of \(\vec{v}_p\) and it is negative if the surface bends towards \(N\) in the direction \(\vec{v}_p.\) In particular, \(p \in M\) is an elliptical point if the surface bends away from \(N\) in both principal curvature directions or bends towards \(N\) in both principal curvature directions, whereas \(p\) is a hyperbolic point if it bends towards \(N\) in one principal curvature direction and bends away from \(N\) in the other.

Lemma 3.44

Let \(M\subset \mathbb{R}^3\) be an embedded surface, \(p \in M\) and \(\mathbf{b}=(\vec{v}_p,\vec{w}_p)\) an ordered orthonormal basis of \(T_pM.\) Then with respect to \(\mathbf{b}\) the shape operator has matrix representation \[\mathbf{M}(S_p,\mathbf{b},\mathbf{b})=\begin{pmatrix} \langle S_p(\vec{v}_p),\vec{v}_p\rangle & \langle S_p(\vec{v}_p),\vec{w}_p\rangle \\ \langle S_p(\vec{w}_p),\vec{v}_p\rangle & \langle S_p(\vec{w}_p),\vec{w}_p\rangle \end{pmatrix}\]

Proof. Exercise!

Example 3.45 • Cylinder Consider the cylinder of radius \(r>0,\) which is the level set \(M=f^{-1}\left(\{r^2\}\right)\) with level \(r^2\) of the function \(f : \mathbb{R}^3 \to \mathbb{R},\) \(p=(x,y,z)\mapsto x^2+y^2.\) Here we obtain \[\operatorname{grad}f(p)=\begin{pmatrix} 2x \\ 2y \\ 0 \end{pmatrix}_{p}\] and hence \[\mathbf{H}_f(p)=\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}.\] At \(p=(x,y,z) \in M\) an ordered orthonormal basis of \(T_pM\) is given by \(\mathbf{b}=(\vec{v}_p,\vec{w}_p),\) where \[\vec{v}_p=\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_p\qquad \text{and}\qquad \vec{w}_p=\frac{1}{r} \begin{pmatrix} -y \\ x \\ 0\end{pmatrix}_p\] Using (3.3) and Lemma 3.44 we compute \[\mathbf{M}(S_p,\mathbf{b},\mathbf{b})=\begin{pmatrix} 0 && 0 \\ 0 && 1/r\end{pmatrix}.\] We conclude that \(\vec{v}_p\) is a principal curvature direction with principal curvature \(0,\) \(\vec{w}_p\) is a principal curvature direction with principal curvature \(1/r.\) The Gauss curvature of the cylinder is \(0=0\cdot 1/r\) at each point of \(M\) and the mean curvature is \(1/(2r)\) at each point of \(M.\) It follows that \(M\) consists entirely of parabolic points.
Example 3.46 • Hyperbolic paraboloid Consider the hyperbolic paraboloid which is the level set with level \(0\) of the function \(f : \mathbb{R}^3 \to \mathbb{R},\) \(p=(x,y,z)\mapsto xy-z.\) Here we obtain \[\operatorname{grad}f(p)=\begin{pmatrix} y \\ x \\ -1 \end{pmatrix}_{p}\] and hence \[\mathbf{H}_f(p)=\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}\] At \(p=(x,y,xy) \in M=f^{-1}\left(\{0\}\right)\) an ordered orthonormal basis of \(T_pM\) is given by \(\mathbf{b}=(\vec{v}_p,\vec{w}_p),\) where \[\vec v_p=\frac{1}{\sqrt{1+y^2}}\begin{pmatrix} 1 \\ 0 \\ y \end{pmatrix}_p\qquad \text{and}\qquad \vec w_p=\frac{1}{\sqrt{1+x^2+y^2}}\begin{pmatrix} -xy/\sqrt{1+y^2} \\ \sqrt{1+y^2} \\ x/\sqrt{1+y^2}\end{pmatrix}_p.\] Using (3.3) and Lemma 3.44 we compute \[\mathbf{M}(S_p,\mathbf{b},\mathbf{b})=\frac{1}{1+x^2+y^2}\begin{pmatrix} 0 & 1 \\ 1 & -\frac{2xy}{\sqrt{1+x^2+y^2}}\end{pmatrix}\] so that at \(p=(x,y,xy)\in M\) we have Gauss curvature \[\tag{3.5} K(p)=\det \mathbf{M}(S_p,\mathbf{b},\mathbf{b})=-\frac{1}{(1+x^2+y^2)^2}\] and mean curvature \[\tag{3.6} H(p)=\frac{1}{2}\operatorname{tr}\mathbf{M}(S_p,\mathbf{b},\mathbf{b})=-\frac{xy}{(1+x^2+y^2)^{3/2}}.\] Notice that the Gauss curvature of \(M\) is negative at each point of \(M\) and hence \(M\) consists entirely of hyperbolic points.
Animation: On the left we see the curve cut out of the hyperbolic paraboloid by the \(2\)-plane \(U_{\vec{v}_p}\) spanned by the normal vector \(N(p)\) (here drawn with opposite sign to the previous example) at \(p=(0,0,0)\) and a rotating tangent vector \(\vec{v}_p.\) On the right we see the corresponding normal curvature \(\kappa(\vec{v}_p).\) The animation pauses at the principal curvature directions, where the signed curvature is minimal and maximal, respectively.
Example 3.47 • Elliptic paraboloid Consider an elliptic paraboloid which is the level set with level \(0\) of the function \(f : \mathbb{R}^3 \to \mathbb{R},\) \(p=(x,y,z)\mapsto \frac{x^2}{2}+\frac{y^2}{2}-z.\) Here we obtain \[\operatorname{grad}f(p)=\begin{pmatrix} x \\ y \\ -1 \end{pmatrix}_p\] and \[\mathbf{H}_f(p)=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}\] At \(p=(x,y,(x^2+y^2)/2) \in M=f^{-1}\left(\{0\}\right)\) an ordered orthonormal basis of \(T_pM\) is given by \(\mathbf{b}=(\vec{v}_p,\vec{w}_p),\) where \[\vec{v}_p=\frac{1}{\sqrt{1+x^2}}\begin{pmatrix} 1 \\ 0 \\ x \end{pmatrix}_p\qquad\text{and}\qquad \vec{w}_p=\frac{1}{\sqrt{1+x^2+y^2}}\begin{pmatrix} -xy/\sqrt{1+x^2} \\ \sqrt{1+x^2}\\ y/\sqrt{1+x^2}\end{pmatrix}_p.\] Using (3.3) and Lemma 3.44 we compute \[\begin{gathered} \mathbf{M}(S_p,\mathbf{b},\mathbf{b})=\frac{1}{(1+x^2)\sqrt{1+x^2+y^2}}\\\cdot\begin{pmatrix} 1 & -xy/\sqrt{1+x^2+y^2} \\ -xy/\sqrt{1+x^2+y^2} & (x^4+x^2(2+y^2)+1)/(1+x^2+y^2)\end{pmatrix}. \end{gathered}\] This gives \[K(p)=\frac{1}{(1+x^2+y^2)^2}\qquad \text{and}\qquad H(p)=\frac{2+x^2+y^2}{2(1+x^2+y^2)^{3/2}}.\] The Gauss curvature is positive at each point of \(M,\) hence \(M\) consists entirely of elliptic points.
Lemma 3.48

Let \(M\subset \mathbb{R}^3\) be an embedded surface, \(p \in M\) and let \(\kappa_1(p)\leqslant \kappa_2(p)\) denote the principal curvatures of \(M\) at \(p\) and \(\vec{v}_p,\vec{w}_p\) the corresponding principal curvature directions. Then \[\kappa_1(p)=\min_{\vec{e}_p \in T_pM,\, \Vert\vec{e}_p\Vert =1} \kappa(\vec{e}_p)\qquad \kappa_2(p)=\max_{\vec{e}_p \in T_pM,\, \Vert\vec{e}_p\Vert =1} \kappa(\vec{e}_p)\]

Proof. Every \(\vec{e}_p \in T_pM\) with \(\Vert \vec{e}_p\Vert=1\) can be written as \[\vec{e}_p=\cos(\alpha)\vec{v}_p+\sin(\alpha)\vec{w}_p\] for some real number \(\alpha \in \mathbb{R}.\) From this we compute \[\begin{aligned} \kappa(\vec{e}_p)&=\langle S_p(\cos(\alpha)\vec{v}_p+\sin(\alpha)\vec{w}_p),\cos(\alpha)\vec{v}_p+\sin(\alpha)\vec{w}_p\rangle\\ &=\cos(\alpha)^2\langle S_p(\vec{v}_p),\vec{v}_p\rangle+2\cos(\alpha)\sin(\alpha)\langle S_p(\vec{v}_p),\vec{w}_p\rangle+\sin(\alpha)^2\langle S_p(\vec{w}_p),\vec{w}_p\rangle\\ &=\cos(\alpha)^2\kappa_1(p)+\sin(\alpha)^2\kappa_2(p). \end{aligned}\] Since \(\kappa_1(p)\leqslant \kappa_2(p)\) we obtain \[\kappa_1(p)\leqslant \cos(\alpha)^2\kappa_1(p)+\sin(\alpha)^2\kappa_2(p)=\kappa(\vec{e}_p)\leqslant \kappa_2(p)\] and \(\kappa_1(p)=\kappa(\vec{e}_p)\) for the choice \(\alpha=0\) and \(\kappa_2(p)=\kappa(\vec{e}_p)\) for the choice \(\alpha=\pi/2.\)

Remark 3.49 Lemma 3.48 and the self-adjointness of the shape operator (Proposition 3.34) have quite a remarkable geometric consequence. Together they imply that when we pick any point \(p\) on an embedded surface \(M\) and determine the tangential directions \(\vec{e}_p\) to \(M\) at \(p\) in which the surface bends the most and the least, then the two directions are always orthogonal.

Home

Contents

Exercise Sheets

Lecture Recordings

Study Weeks